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A BRANCHING METHOD FOR STUDYING STABILITY OF
A SOLUTION TO A DELAY DIFFERENTIAL EQUATION

Yu. F. Dolgĭı and S. N. Nidchenko UDC 517.929

Abstract: We study stability of antisymmetric periodic solutions to delay differential equations. We
introduce a one-parameter family of periodic solutions to a special system of ordinary differential equa-
tions with a variable period. Conditions for stability of an antisymmetric periodic solution to a delay
differential equation are stated in terms of this period function.
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1. Statement of the Problem

Consider a scalar differential equation with constant delay

dx(t)
dt

= −f(x(t− τ)), (1.1)

where f is a continuously differentiable odd function with positive derivative on an interval (−γ, γ), γ > 0.
In this article we study the questions of existence and stability for the periodic solutions satisfying the
antisymmetry condition x(t + 2τ) = −x(t), t ∈ (−∞,+∞). The isolated periodic solutions to delay
differential equations were studied in [1, 2]; the periodic solutions with a period divisible by the delay,
in [3, 4]; and their stability, in [4, 5].

Using the results of [5], we reduce the problem of finding an antisymmetric periodic solution to the
delay differential equation (1.1) to solving the following special boundary value problem for a system of
ordinary differential equations:

ẋ1 = f(x2), ẋ2 = −f(x1), (1.2)

x1(τ) = x2(0), x2(τ) = −x1(0). (1.3)

The connection between an antisymmetric periodic solution x to the delay differential equation (1.1) and
a solution {x1, x2} to the boundary value problem (1.2), (1.3) is now given by the formulas

x(t) =
{
x1(t), t ∈ [0, τ ],
x2(t− τ), t ∈ [τ, 2τ ].

(1.4)

System (1.2) extends from the interval [0, τ ] to the whole real axis and has the first integral

F (x1) + F (x2) = C = const, x1, x2 ∈ (−γ, γ), (1.5)

where F (x) =
∫ x
0 f(z) dz, x ∈ (−γ, γ).

Formula (1.5) defines the position of the integral curves of system (1.2) on the phase plane. The
special initial conditions x1(0, μ) = 0 and x2(0, μ) = μ are associated with the closed integral curves
generating periodic motions {x1(t, μ), x2(t, μ)}, t ∈ R, for 0 < μ < γ. The periods T of solutions to (1.2)
depend on μ.

For small values of μ, (1.2) is a Lyapunov system [6, p. 153]. To find the asymptotic expansions of
periodic solutions to this system for small values of μ, we may use the Lyapunov method [6, p. 159].
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Assertion 1.1. Let f be a thrice continuously differentiable odd function in a neighborhood of the
point x = 0 such that f ′(0) > 0. For small values of μ, the periodic solutions {x1(t, μ), x2(t, μ)}, t ∈ R,
with period T are defined by the formulas

xi(t, μ) = yi

(
2π
T (μ)

t, μ

)
, t ∈ R, i = 1, 2,

where yi(s, μ), i = 1, 2, s ∈ R, are 2π-periodic functions. For small values of μ the functions y1(s, μ)
and y2(s, μ) on the interval [0, 2π] and the period function T have the asymptotic expansions:

T (μ) =
2π
f ′(0)

− πf
′′′

(0)
4(f ′(0))2

μ2 + o(μ2),

y1(s, μ) = sin (s)μ+
f

′′′
(0)

24f ′(0)
(− sin3 (s) cos2 (s) − sin5 (s) + sin (s))μ3 + o(μ3),

y2(s, μ) = cos (s)μ+
f

′′′
(0)

24f ′(0)
(− sin2 (s) cos3 (s) − cos5 (s) + cos (s))μ3 + o(μ3).

Assertion 1.2. Let f be a continuously differentiable odd function with positive derivative on
an interval (−γ, γ). For the delay differential equation (1.1) to have a periodic solution satisfying
the antisymmetry condition, it is necessary and sufficient that the number 4τ belong to the inter-
val (inf0<μ<γ T (μ), sup0<μ<γ T (μ)). This interval is complemented with the point t = inf0<μ<γ T (μ)
(t = sup0<μ<γ T (μ)) if inf0<μ<γ T (μ) = T (μ1) (sup0<μ<γ T (μ) = T (μ2)) for some μ1 ∈ (0, γ) (μ2 ∈ (0, γ)).

Under the conditions of Assertion 1.2, the antisymmetric periodic solution x(t, μ∗), t ∈ R, to the
delay differential equation is expressed by (1.4) in terms of the periodic solution {x1(t, μ∗), x2(t, μ∗)},
t ∈ R, to the system (1.2) of ordinary differential equations for which T (μ∗) = 4τ , 0 < μ∗ < γ. The delay
differential equation (1.1) may have several such solutions. Their number is determined by the number of
positive solutions to the equation T (μ) = 4τ for 0 < μ < γ. The delay differential equation has a unique
periodic solution if the period function T is monotone.

To study stability of an antisymmetric periodic solution x(t, μ∗), t ∈ R, to the delay differential
equation (1.1), consider the linear approximation equation

dy(t)
dt

= −f ′(x(t− T (μ∗)/4, μ∗))y(t− T (μ∗)/4) (1.6)

for the equation of perturbed motion. In (1.6), the function a(t, μ∗) = f ′(x(t − T (μ∗)/4, μ∗)), t ∈ R,
takes only positive values and depends periodically on t with period T (μ∗)/2.

In this article we propose to use the branching approach to the problem of studying stability of
a periodic solution. This method is connected with passage from studying stability of the delay differential
equation (1.6) to studying stability of the one-parameter family of delay differential equations

dy(t)
dt

= −f ′(x(t− T (μ)/4, μ))y(t− T (μ)/4), μ ∈ [0, γ). (1.7)

2. Stability of a Linear Periodic System of Delay Differential Equations

Changing variables in the delay differential equation (1.7):

t =
T (μ)
2π

s, ỹ(s) = y

(
T (μ)
2π

s

)
, x̃(s, μ) = x

(
T (μ)
2π

t, μ

)
,

we find that
dỹ(s)
ds

= −T (μ)
2π

f ′(x̃(s− π/2, μ))ỹ(s− π/2), μ ∈ [0, γ). (2.1)

The coefficient of the so-obtained differential equation is close to a constant for small μ; i.e., the delay
differential equation is quasiharmonic.
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Assertion 2.1. Suppose that the conditions of Assertion 1.1 are satisfied. Then, for small positive
values of μ, the quasiharmonic delay differential equation (2.1) is stable if T ′′(0) > 0 and unstable if
T ′′(0) < 0.

Proof. For μ = 0, the delay differential equation (2.1) has the form dŷ(s)
ds = −ŷ(s − π/2). Write

down the characteristic equation of (2.1): λ = −e−(π/2)λ. Using the D-partition method, we can show
that it has only two purely imaginary roots λ = ±i, whereas the other roots have negative real parts.
Consequently, stability of (2.1) for small positive μ is determined by the behavior of the characteristic
exponents of this equation which coincide with the numbers ±i for μ = 0. To the pair of purely imaginary
roots of the characteristic equation, there corresponds one semisimple characteristic exponent λ0 = i
of (2.1). It is associated with two linearly independent Floquet solutions: y1(s) = eis and y2(s) = e−is,
s ∈ R. The quasiharmonic delay differential equation (2.1) has a π-periodic solution y(s, μ) = ẋ(s, μ),
s ∈ R, which is a Floquet solution to this equation with the characteristic exponent λ = i. Since the
characteristic exponent λ0 is double, the quasiharmonic delay differential equation (2.1) has one more
characteristic exponent λ(μ) (λ(0) = λ0 = i). If the real part of this characteristic exponent is greater
than zero for small positive values of μ then the quasiharmonic equation is unstable. If the real part
of the characteristic exponent λ(μ) is less than zero for small positive values of the parameter μ then
the critical characteristic exponent λ = i is simple, the other characteristic exponents have negative real
parts, and the quasiharmonic delay differential equation is stable. Using Assertion 1.1 and the method for
calculation of the characteristic exponents for quasiharmonic delay differential equations [7], we find that

λ(μ) = i− f ′(0)T ′′(0)
4 + π2

μ2 + o(μ2).

The assertion is proven.

Stability of (2.1) at the large values of μ depends on the disposition of the eigenvalues of the mon-
odromy operator acting in C[−π, 0]. The monodromy operator is defined by the formula (Uϕ)(ϑ) =
y(π + ϑ, ϕ), ϑ ∈ [−π, 0], where y(π + ·, ϕ) is a segment of the solution to (2.1) with the initial moment
t = 0 and the initial function ϕ.

We can replace the problem of finding nonzero eigenvalues ρ ∈ C of the monodromy operator U with
the problem of finding nonzero eigenvalues z ∈ C to the special boundary value problem [8, p. 49]

ẏ1 = za(ϑ, μ)y2, ẏ2 = −za(π/2 + ϑ, μ)y1, (2.2)

y1(−π/2) = −zy2(0), y2(−π/2) = zy1(0), (2.3)

where ρ = −z2, a(ϑ, μ) = T (μ)
2π f ′(x̃(ϑ − π/2, μ)), ϑ ∈ [−π/2, π/2], μ ∈ [0, γ), z, ρ ∈ C. Reduce the

boundary value problem (2.2), (2.3) to the special form

Jẏ = zH(ϑ, μ)y, (2.4)

y(−π/2) = zJy(0). (2.5)

Here y = (y1, y2)�, z ∈ C,

J =
(

0 −1
1 0

)
, H(ϑ, μ) =

(
a(π/2 + ϑ, μ) 0

0 a(ϑ, μ)

)
,

μ ∈ [0, γ) and ϑ ∈ [−π/2, 0]. The eigenvalues z of the boundary value problem (2.4), (2.5) are determined
from the characteristic equation

det(zJY (0, z, μ) − I2) = 0, (2.6)

where Y is the normed fundamental matrix of system (2.4), Y (−π/2, z, μ) = I2, z ∈ C, μ ∈ [0, γ), I2 is
the identity matrix of order 2. Using Liouville’s formula, we find that

det(Y (ϑ, z, μ)) = exp
( ϑ∫
−π/2

Tr(H(s, μ)) ds
)

= 1, z ∈ C, μ ∈ [0, γ), ϑ ∈ [−π/2, 0].
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Eventually, the characteristic equation (2.6) takes the form
D(z, μ) = z2 − 2V (z, μ)z + 1 = 0, (2.7)

where V (z, μ) = 1
2(y12(0, z, μ) − y21(0, z, μ)) and Y (ϑ, z, μ) = ‖yij(ϑ, z, μ)‖2

1, ϑ ∈ [−π/2, 0], z ∈ C,
μ ∈ [0, γ). Consider some properties of the normed fundamental matrix Y of (2.4).

Lemma 2.1. The following equality is valid for the fundamental matrix Y :

Y (−π/2 − ϑ, μ, z) = JY (ϑ, μ,−z)J�Y (0, μ, z), (2.8)
where ϑ ∈ [−π/2, 0], z ∈ C, and μ ∈ [0, γ).

Proof. Replacing the argument ϑ with ϑ1, rewrite (2.2) as follows:
ẏ1 = za(ϑ1, μ)y2, ẏ2 = −za(π/2 + ϑ1, μ)y1, ϑ1 ∈ [−π/2, 0].

By the change of variables ϑ1 = −π/2−ϑ, v1(ϑ) = y2(−π/2−ϑ), v2(ϑ) = −y1(−π/2−ϑ), ϑ ∈ [−π/2, 0],
in this system of differential equations, we obtain

v̇1 = −za(ϑ, μ)v2, v̇2 = za(π/2 + ϑ, μ)v1. (2.9)
An arbitrary solution {v1, v2}� to the system (2.9) of differential equations is representable as

(v1(ϑ, μ, z), v2(ϑ, μ, z))� = J�y(−π/2 − ϑ, μ, z), (2.10)
where y(ϑ, μ, z) = (y1(ϑ, μ, z), y2(ϑ, μ, z))�, ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ), is some solution to (2.2).
Then

(v1(ϑ, μ, z), v2(ϑ, μ, z))� = J�Y (−π/2 − ϑ, μ, z)D,

with ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ), andD ∈ C
2. In view of the arbitrariness of the solution {v1, v2}�, the

vector constant D can take arbitrary values in C
2. The solution {v1, v2}� also admits the representation

(v1(ϑ, μ, z), v2(ϑ, μ, z))� = y(ϑ, μ,−z) = Y (ϑ, μ,−z)C (2.11)
for some C ∈ C

2. The following is valid:
Y (ϑ, μ,−z)C = J�Y (−π/2 − ϑ, μ, z)D, ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ).

Putting ϑ = −π/2 in the above equality, we find that C = J�Y (0, μ, z)D, z ∈ C, μ ∈ [0, γ). Consequently,
Y (ϑ, μ,−z)J�Y (ϑ, μ, z)D = J�Y (−π/2 − ϑ, μ, z)D, ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ).

In view of the arbitrariness of D ∈ C
2, the last equality implies (2.8).

Lemma 2.2. The following is valid for the fundamental matrix Y :

Y (−π/2 − ϑ, μ, z) = SY (ϑ, μ, z)Y (0, μ, z), (2.12)

where ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ), and S =
(

0 1
1 0

)
.

Proof. By the change of variables ϑ1 = −π/2 − ϑ, v1(ϑ) = y2(−π/2 − ϑ), v2(ϑ) = y1(−π/2 − ϑ),
ϑ ∈ [−π/2, 0], in (2.2), we obtain the new system of differential equations

v̇1 = za(ϑ, μ)v2, v̇2 = −za(π/2 + ϑ, μ)v1.

An arbitrary solution {v1(ϑ, μ, z), v2(ϑ, μ, z)}�, ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ), to the new system of
differential equations is representable as

(v1(ϑ, μ, z), v2(ϑ, μ, z))� = Y (ϑ, μ, z)C,
where ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ), and C ∈ C

2. But the same solution is also representable as
(v̄1(ϑ, μ, z), v̄2(ϑ, μ, z))� = SY (−π/2 − ϑ, μ, z)D,

where ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ), and D ∈ C
2. Then

Y (ϑ, μ, z)C = SY (−π/2 − ϑ, μ, z)D
for all ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ). It follows from this equality with ϑ = −π/2 that C = SY (0, μ, z)D.
Then

Y (ϑ, μ, z)SY (0, μ, z)D = SY (−π/2, μ, z)D, ϑ ∈ [−π/2, 0], z ∈ C, μ ∈ [0, γ).

Since D ∈ C
2 is arbitrary, we arrive at (2.12).
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Lemma 2.3. Let f be a continuously differentiable odd function with positive derivative on an in-
terval (−γ, γ). Then the function V satisfies the conditions:

(a) V (1, μ) = 1, μ ∈ [0, γ);
(b) V (−z, μ) = −V (z, μ), z ∈ C, μ ∈ [0, γ).

Proof. We can show that (2.1) has an antisymmetric 2π-periodic solution ỹ(s, μ) = dx̃(s,μ)
ds , s ∈ R,

μ ∈ [0, γ). It is associated with the eigenvalue ρ = −1 of the monodromy operator, since the identity
ẋ(π/2 + ϑ, μ∗) ≡ −ẋ(ϑ, μ∗), ϑ ∈ [−π/2, 0], holds for an antisymmetric periodic solution to the delay
differential equation (1.1). To this number there correspond the two eigenvalues z = ±1 of the boundary
value problem (2.4), (2.5). It follows from (2.7) that V satisfies the conditions V (±1, μ) = ±1, μ ∈ [0, γ).
The first assertion of the lemma is proven.

Show that y12(0, μ, z) = −y21(0, μ, z), μ ∈ [0, γ), z ∈ C. By Lemma 2.2, Y (0, μ, z)SY (0, μ, z) = S,
μ ∈ [0, γ), z ∈ C, or, in expanded form,(

a11(μ, z) a12(μ, z)
a21(μ, z) a22(μ, z)

)
=
(

0 1
1 0

)
,

where
a11(μ, z) = y11(0, μ, z)(y21(0, μ, z) + y12(0, μ, z)),

a12(μ, z) = y2
12(0, μ, z) + y11(0, μ, z)y22(0, μ, z),

a21(μ, z) = y11(0, μ, z)y22(0, μ, z) + y2
21(0, μ, z),

a22(μ, z) = (y12(0, μ, z) + y21(0, μ, z))y22(0, μ, z),

μ ∈ [0, γ), z ∈ C.

Let y12(0, μ, z) + y21(0, μ, z)) �= 0 for some μ ∈ [0, γ), z ∈ C. Then the matrix equality implies that

y11(0, μ, z) = y22(0, μ, z) = 0, y12(0, μ, z) = y21(0, μ, z) = ±1.

In this case detY (0, μ, z) = −1; a contradiction. Consequently,

Y (0, μ, z) =
(
y11(0, μ, z) y12(0, μ, z)
−y12(0, μ, z) y22(0, μ, z)

)
, μ ∈ [0, γ), z ∈ C.

Now, by Lemma 2.1, Y (0,−z) = J�Y −1(0, z)J , or in expanded form,(
y11(0, μ,−z) y12(0, μ,−z)
−y12(0, μ,−z) y22(0, μ,−z)

)
=
(
y11(0, μ, z) −y12(0, μ, z)
y12(0, μ, z) y22(0, μ, z)

)
,

where μ ∈ [0, γ) and z ∈ C. From the matrix equality we find that

y12(0, μ,−z) = −y12(0, μ, z), μ ∈ [0, γ), z ∈ C.

Consequently,

V (−z, μ) = y12(0, μ,−z) = −y12(0, μ, z) = −V (z, μ), μ ∈ [0, γ), z ∈ C.

The lemma is proven.

As μ varies, the roots of (2.7) move over the complex plane in the symmetric manner with respect
to the imaginary axis. Therefore, studying their motion, we can only consider the right half-plane. It
follows from Lemma 2.3 that (2.7) has the roots z = ±1; moreover, for each real root z1 �= 1, there is
a real root −z1 and, for each complex root z2, there are complex roots −z2, z̄2, and −z̄2.
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Lemma 2.4. Let f be a continuously differentiable odd function with positive derivative on an in-
terval (−γ,+γ). If a root z of (2.7) satisfies the condition |z| = 1 then either z = 1 or z = −1.

Proof. Consider the following boundary value problem:

Jẏ = λH(ϑ, μ)y, y(−π/2) = zJy(0), |z| = 1, λ, z ∈ C. (2.13)

For fixed values of the arguments ϑ ∈ [−1, 0] and μ ∈ [0, γ) the matrices H(ϑ, μ) are positive definite.
Hence, the auxiliary boundary value problem (2.13) is selfadjoint. In view of this fact, (2.13) has at most
countably many eigenvalues λ which may have only one limit point λ = ∞. The eigenvalues (if any) are
real and have finite multiplicity [9, p. 176]. If the boundary value problem (2.4), (2.5) has an eigenvalue
z satisfying the condition |z| = 1 then (2.13) has the eigenvalue λ = z. Since all eigenvalues of (2.13) are
real, we conclude that the eigenvalue in question is either z = 1 or z = −1. The lemma is proven.

By Lemma 2.4, the roots of the characteristic equation, moving continuously on the complex plane,
may meet the unit circle |z| = 1 only at the points z = 1 and z = −1. By symmetry of motion of
the roots of the characteristic equation, the two roots intersect simultaneously the circle at the points
z = 1 and z = −1. Also, the directions of intersection of the circle coincide. The root z = 1 becomes
multiple at the intersection moment. This condition enables us to determine the corresponding value of
the parameter μ = μ∗. We have

∂D(1, μ∗)
∂z

= 2 − 2V (1, μ∗) − 2
∂V (1, μ∗)

∂z
= −2

∂V (1, μ∗)
∂z

= 0.

Consequently, the traversal of the roots of the characteristic equation on the complex plane through the
unit circle occurs at the values of the parameter μ determined by the equation

∂V (1, μ)
∂z

= 0, μ ∈ [0, γ). (2.14)

Consider a neighborhood of the point z = 1. Put z = 1 + z̃, where z̃ is a small perturbation. We
search for the fundamental matrix of (2.4) in the form of an asymptotic expansion

Y (ϑ, z, μ) = Y0(ϑ, μ) + Y1(ϑ, μ)z̃ + Y2(ϑ, μ)z̃2 + o(z̃2),

where ϑ ∈ [−π/2, 0], z̃ ∈ C, and μ ∈ [0, γ). For finding the coefficients of this asymptotic expansion we
have the equations

Ẏ0 = J−1H(ϑ, μ)Y0, (2.15)

Ẏ1 = J−1H(ϑ, μ)Y1 + J−1H(ϑ, μ)Y0,

Ẏ2 = J−1H(ϑ, μ)Y2 + J−1H(ϑ, μ)Y1, ϑ ∈ [−π/2, 0], μ ∈ [0, γ).

Since Y (−π/2, z, μ) = I2, z ∈ C, we have

Y0(−π/2, μ) = I2, Y1(−π/2, μ) = 0, Y2(−π/2, μ) = 0, μ ∈ [0, γ).

Knowing Y0, we can find the matrix functions

Y1(ϑ, μ) = −
ϑ∫

−π/2

Y0(ϑ, μ)Y −1
0 (s, μ)JH(s, μ)Y0(s, μ) ds, (2.16)

Y2(ϑ, μ) = −
ϑ∫

−π/2

Y0(ϑ, μ)Y −1
0 (s, μ)JH(s, μ)Y1(s, μ)ds, (2.17)

where ϑ ∈ [−π/2, 0) and μ ∈ [0, γ). The matrix Y0 of the Hamilton equation satisfies the identity
[9, p. 103]

Y T
0 (ϑ, μ)JY0(ϑ, μ) ≡ J, ϑ ∈ [−π/2, 0], μ ∈ [0, γ).
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Therefore, the following formulas hold:

Y1(ϑ, μ) = −Y0(ϑ, μ)J

ϑ∫
−π/2

Y �
0 (s, μ)H(s, μ)Y0(s, μ) ds, (2.18)

Y2(ϑ, μ) = −Y0(ϑ, μ)J

ϑ∫
−π/2

Y �
0 (s, μ)H(s, μ)Y1(s, μ) ds, (2.19)

where ϑ ∈ [−π/2, 0] and μ ∈ [0, γ). The matrix function Y0 is a fundamental matrix for the system of
differential equations

ψ̇ = J−1H(ϑ, μ)ψ,

where ψ = (ψ1, ψ2)�, ϑ ∈ [−π/2, 0], and μ ∈ [0, γ). Write down this system in the coordinate form

ψ̇1 = a(ϑ, μ)ψ2, ψ̇2 = −a(π/2 + ϑ, μ)ψ1, ϑ ∈ [−π/2, 0], μ ∈ [0, γ). (2.20)

Here
a(ϑ, μ) =

T (μ)
2π

f ′(x̃(ϑ− π/2, μ)) =
T (μ)
2π

f ′(x̃1(π/2 + ϑ, μ)),

a(π/2 + ϑ, μ) =
T (μ)
2π

f ′(x̃(ϑ, μ)) =
T (μ)
2π

f ′(x̃2(π/2 + ϑ, μ)),

where (x̃1(s, μ), x̃2(s, μ))�, s ∈ [0, π/2], μ ∈ [0, γ), is a solution to the system of differential equations

dx̃1

ds
=
T (μ)
2π

f(x̃2),
dx̃2

ds
= −T (μ)

2π
f(x̃1).

Then (2.20) becomes

ψ̇1 =
T (μ)
2π

f ′(x̃1(π/2 + ϑ, μ))ψ2, ψ̇2 = −T (μ)
2π

f ′(x̃2(π/2 + ϑ, μ))ψ1. (2.21)

Lemma 2.5. Let f be a continuously differentiable odd function with positive derivative on an in-
terval (−γ, γ). Then the normed fundamental matrix of (2.21) has the form

Y0(ϑ, μ) =

(
∂x̃2(s,μ)

∂μ + T ′(μ)
2π (s)f(x̃1(s, μ)) f(x̃1(s,μ))

f(μ)

−∂x̃1(s,μ)
∂μ + T ′(μ)

2π (s)f(x̃2(s, μ)) f(x̃2(s,μ))
f(μ)

)
s=π/2+ϑ

, ϑ ∈ R, μ ∈ (0, γ). (2.22)

Proof. Consider the system of linear differential equations

dx1

dt
= f ′(x2(t, μ))x2,

dx2

dt
= −f ′(x1(t, μ))x1, (2.23)

which is the system of differential equations in variations for (1.2). Using the methods of [5], we find its
normed fundamental matrix:

X(t, μ) =

(
1

f(μ)
dx1(t,μ)

dt
∂x1(t,μ)

∂μ

1
f(μ)

dx2(t,μ)
dt

∂x2(t,μ)
∂μ

)
, t ∈ R, μ ∈ (0, γ).

By the change of variables

t =
T (μ)
2π

s, x1

(
T (μ)
2π

s

)
= x̃1(s), x2

(
T (μ)
2π

s

)
= x̃2(s), s ∈ R, μ ∈ (0, γ),
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from (2.23) we obtain

dx̃1

ds
=
T (μ)
2π

f ′(x̃2(s, μ))x̃2,
dx̃2

ds
= −T (μ)

2π
f ′(x̃1(s, μ))x̃1, (2.24)

where s ∈ R and μ ∈ (0, γ). Using the properties of the 2π-periodic solution

(x̃1(s, μ), x̃2(s, μ))� =
(
x1

(
T (μ)
2π

s, μ

)
, x2

(
T (μ)
2π

s, μ

))�
, s ∈ R, μ ∈ (0, γ),

to the system of differential equations

dx̃1

ds
=
T (μ)
2π

f(x̃2),
dx̃2

ds
= −T (μ)

2π
f(x̃1), s ∈ R, μ ∈ (0, γ),

we find the fundamental matrix of (2.24):

X̃(s, μ) =

(
f(x̃2(s,μ))

f(μ)
∂x̃1(s,μ)

∂μ − T ′(μ)
2π sf(x̃2(s, μ))

−f(x̃1(s,μ))
f(μ)

∂x̃2(s,μ)
∂μ + T ′(μ)

2π sf(x̃1(s, μ))

)
,

s ∈ R and μ ∈ (0, γ). System (2.21) is adjoint to (2.24). Their solutions are connected by the transfor-
mation

(x̃1(π/2 + ϑ, μ), x̃2(π/2 + ϑ, μ))� = J(ψ1(ϑ, μ), ψ2(ϑ, μ))�, ϑ ∈ R, μ ∈ (0, γ).

We have the equality
JY0(ϑ, μ)d = X̃(π/2 + ϑ, μ)c, ϑ ∈ R, μ ∈ (0, γ),

where c, d ∈ R
2. We now find c = Jd. Consequently, the fundamental matrix Y0 has the form (2.22).

Lemma 2.6. Let f be a continuously differentiable odd function with positive derivative on an in-
terval (−γ, γ). The root z = 1 of (2.7) is multiple if and only if μ = μ∗ is a critical point of the function T ;
i.e., T ′(μ∗) = 0. Moreover, the multiplicity of the root is two.

Proof. Write down the expansion of the function

V (z, μ) = 1 + V1(μ)z̃ + V2(μ)z̃2 + o(z̃2), (2.25)

in a neighborhood of the point z = 1 where z = 1 + z̃, z̃ ∈ C. Using the definition of V , we find that

V1(μ) =
1
2
(
y1
12(0, μ) − y1

21(0, μ)
)
,

V2(μ) =
1
2
(
y2
12(0, μ) − y2

21(0, μ)
)
, μ ∈ [0, γ).

(2.26)

It follows from (2.18) that Y1(0, μ) = −Y0(0, μ)JD(μ), μ ∈ [0, γ), where

D(μ) =

0∫
−π/2

Y T
0 (s, μ)H(s, μ)Y0(s, μ) ds, μ ∈ [0, γ).

For each value μ ∈ [0, γ) the matrix D(μ) = ‖dij(μ)‖2
1 is symmetric and positive definite; i.e., d11(μ) > 0,

d22(μ) > 0, and d12(μ) = d21(μ). It follows from (2.22) that

Y0(0, μ) =
(

1
4T

′(μ)f(μ) 1
−1 0

)
, μ ∈ [0, γ).
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Calculating the matrix Y1(0, μ), μ ∈ [0, γ), we find that
∂V (1, z)
∂z

= V1(μ) = d22(μ)
T (μ)

4
f(μ)T ′(μ), μ ∈ [0, γ). (2.27)

It follows from the last formula that condition (2.14) is valid for μ = μ∗ if and only if T ′(μ∗) = 0. The
first part of the lemma is proven.

Consider a small neighborhood {μ : |μ− μ∗| < δ, μ ∈ [0, γ)} of the critical point μ = μ∗ and a small
neighborhood {z : |z−1| < ε, z ∈ C} of the point z = 1. Change the variables z = 1+ z̃, |z̃| < ε, in (2.7).
Using (2.25), transform (2.7) to the form

z̃(1 − 2V1(μ) − 2V2(μ)) − 2V1(μ) + o(z̃) = 0, |z̃| < ε, |μ− μ∗| < δ. (2.28)
Show that V2(μ∗) is less than zero. From (2.19) we obtain the representation

Y2(0, μ∗) = Y0(0, μ∗)JK,
where

K =

0∫
−π/2

C(s)J

s∫
−π/2

C(s1)ds1 ds = ‖kij‖2
1,

C(s) = Y �
0 (s, μ∗)H(s, μ∗)Y0(s, μ∗) = ‖cij(s)‖2

1 is a symmetric positive definite matrix for fixed values of
the argument s ∈ [−π/2, 0]. Calculating the matrix

Y2(0, μ∗) =
(
k11 k12

k21 k22

)
,

we find V2(μ) = 1
2(k12 − k21). Using the definition of K, we obtain

V2(μ∗) =
1
2

0∫
−π/2

(
2c12(s)

0∫
−π/2

c12(s)ds− c11(s)

0∫
−π/2

c22(s) ds− c22(s)

0∫
−π/2

c11(s) ds
)
ds

=
1
2

( 0∫
−π/2

c12(s) ds
)2

−
0∫

−π/2

c11(s) ds

0∫
−π/2

c22(s) ds < 0.

Consequently,
d2D(1, μ∗)

dz2
= 2(1 − 2V2(μ∗)) �= 0,

and the lemma is proven.

Lemma 2.7. Let f be a thrice continuously differentiable odd function with positive first derivative
on an interval (−γ, γ). As μ increases in a small neighborhood of a critical point μ∗, the root of the
characteristic equation goes from the interior to the exterior of the unit disk (from the exterior to the
interior) if T ′′(μ∗) > 0 (T ′′(μ∗) < 0).

Proof. Since V2(μ∗) < 0; therefore, (2.28) has a unique solution in the domain |z̃| < ε, |μ−μ∗| < δ
[10, p. 26] which is defined by the formula

z̃ =
2dV1(μ∗)

dμ

1 − 2V2(μ∗)
μ̄+ o(μ̄), μ̄ = μ− μ∗.

Using (2.27), we find that

dV1(μ∗)
dμ

= d′22(μ
∗)
T (μ∗)

4
f(μ∗)T ′(μ∗) + d22(μ∗)

1
4
f(μ∗)(T ′(μ∗))2

+d22(μ∗)
T (μ∗)

4
f ′(μ∗)T ′(μ∗) + d22(μ∗)

T (μ∗)
4

f(μ∗)T ′′(μ∗) = d22(μ∗)
T (μ∗)

4
f(μ∗)T ′′(μ∗).

Consequently, the directions of the passage of the root of (2.7) through the unit circle are determined by
the sign of T ′′(μ∗). The lemma is proven.
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Theorem 2.1. Let f be a thrice continuously differentiable odd function with positive first derivative
on an interval (−γ, γ). Suppose that the second derivative of the function T is different from zero at
its every critical point. Then for noncritical points μ0 ∈ (0, γ) of the function T , the delay differential
equation (2.1) is stable if T ′(μ0) > 0 and unstable if T ′(μ0) < 0.

Proof. In the proof of Assertion 2.1 we demonstrated that (2.1) for μ = 0 has a purely imaginary
characteristic exponent λ(0) = i, while all other characteristic exponents have negative real parts. Using
the relation ρ = eλπ between the characteristic exponents and the eigenvalues of the monodromy operator,
we obtain ρ(0) = −1. The other eigenvalues of the monodromy operator for μ = 0 lie inside the domain
|ρ| < 1. Use the relation ρ = −z−2 between the eigenvalues ρ of the monodromy operator and the
roots z of (2.7). Then the eigenvalue ρ(0) = −1 is associated with the pair of roots z1,2(0) = ±1 and
the eigenvalues ρ inside the domain |ρ| < 1, with roots in the domain |z| > 1. By Lemma 2.3, there is
an eigenvalue ρ1(μ) = −1, μ ∈ [0, γ), associated with the pair of roots z1,2(μ) = ±1, μ ∈ [0, γ), of (2.7).

Observe that the point μ = 0 is critical and the signs of the values of T ′′ alternate at successive
critical points.

Let T ′′(0) > 0. Consequently, T ′(μ) > 0 for 0 < μ < μ1, where μ1 is the critical point nearest to
μ = 0. Then, by Assertion 2.1, equation (2.1) is stable for small positive μ. The multiple roots z1,2 = ±1
split and two roots go to the domain |z| > 1. By Lemma 2.6, no roots of (2.7) may appear in the domain
|z| < 1 with the increase of μ on the interval 0 < μ < μ1. Consequently, we have stability. At the critical
point μ1 we have T ′′(μ1) < 0 and T ′(μ) < 0 for μ1 < μ < μ2, where μ2 is the critical point nearest to μ1

from the right. By Lemma 2.7, as the parameter μ passes through the point μ1, a pair of roots of (2.7)
enters the domain |z| < 1 and stability changes for instability. On the interval μ1 < μ < μ2, the number
of roots in the domain |z| < 1 cannot change and hence we have instability on this interval.

Let T ′′(0) < 0. Consequently, T ′(μ) < 0 for 0 < μ < μ1, where μ1 is the critical point nearest
to μ = 0. Then, by Assertion 2.1, equation (2.1) is unstable for small positive μ. The multiple roots
z1,2 = ±1 split, and two roots go to the domain |z| < 1. By Lemma 2.6, with the increase of μ on the
interval 0 < μ < μ1, the number of roots of (2.7) in the domain |z| < 1 cannot change. Consequently,
we have instability on this interval. At the critical point μ1 we have T ′′(μ1) > 0 and T ′(μ) > 0 for
μ1 < μ < μ2, where μ2 is the critical point nearest to μ1 from the right. By Lemma 2.7, upon the passage
through the point μ1 a pair of roots of (2.7) exits from the domain |z| < 1 and instability changes for
stability. On the interval μ1 < μ < μ2 the number of roots in the domain |z| < 1 cannot change and
hence we have stability on this interval.

This analysis demonstrates that stability of (2.1) for noncritical points of the function T is determined
by the sign of the first derivative of the period function T at these points. The theorem is proven.

3. Stability of Periodic Solutions to a Nonlinear Delay Differential Equation

We return to the problem of stability of an antisymmetric periodic solution to a delay differential
equation.

Theorem 3.1. Let f be a thrice continuously differentiable odd function with positive first derivative
on an interval (−γ, γ). Suppose that the second derivative of T is different from zero at its every critical
point and a noncritical point μ0 ∈ (0, γ) of the function T is a root of the equation T (μ) = 4τ . Then
the antisymmetric periodic solution to the delay differential equation (1.1) corresponding to this root is
stable (unstable) if T ′(μ0) > 0 (T ′(μ0) < 0).

Proof. Suppose that the condition T ′(μ0) < 0 is satisfied for the noncritical point μ0 ∈ (0, γ). It
follows from the proof of Theorem 2.1 that there is a pair of roots of (2.7) in the domain |z| < 1. This
pair is associated with an eigenvalue ρ0 of the monodromy operator whose absolute value is greater than
one. Then, by the theorem on instability in linear approximation [11, p. 287], a periodic solution to the
delay differential equation (1.1) is unstable.

Suppose that the condition T ′(μ0) > 0 is satisfied at a noncritical point μ0 ∈ (0, γ). It follows from
the proof of Theorem 2.1 that all roots of (2.7) lie in the domain |z| > 1 except for the pair z0

1,2 = ±1.
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This pair z0
1,2 is associated with the eigenvalue ρ0 = −1 of the monodromy operator. The roots of (2.7) in

the domain |z| > 1 are associated with the eigenvalues of the monodromy operator in the domain |ρ| < 1.
Show that the eigenvalue ρ0 = −1 is simple. Using the relation z = iρ−

1
2 between the roots of (2.7)

and the eigenvalues of the monodromy operator, write down the characteristic equation for finding ρ:

D̃(ρ, μ0) = −ρ−1 + 2iρ−
1
2V (−iρ− 1

2 , μ0) + 1 = 0.

Then
D̃(ρ, μ0)
dρ

∣∣∣∣
ρ=−1

= 1 − V (1, μ0) − V (1, μ0)
dz

= −V (1, μ0)
dz

�= 0.

Using an analog of the Andronov–Vit theorem for functional-differential equations [11, p. 287], we con-
clude that a periodic solution to the delay differential equation (1.1) is stable.
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Anal., 14, No. 8, 701–715 (1990).
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